Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 306
Filtrar
1.
Cancer Res ; : OF1-OF15, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38593213

RESUMO

Patients with triple-negative breast cancer (TNBC) have a poor prognosis due to the lack of effective molecular targets for therapeutic intervention. Here we found that the long noncoding RNA (lncRNA) MILIP supports TNBC cell survival, proliferation, and tumorigenicity by complexing with transfer RNAs (tRNA) to promote protein production, thus representing a potential therapeutic target in TNBC. MILIP was expressed at high levels in TNBC cells that commonly harbor loss-of-function mutations of the tumor suppressor p53, and MILIP silencing suppressed TNBC cell viability and xenograft growth, indicating that MILIP functions distinctively in TNBC beyond its established role in repressing p53 in other types of cancers. Mechanistic investigations revealed that MILIP interacted with eukaryotic translation elongation factor 1 alpha 1 (eEF1α1) and formed an RNA-RNA duplex with the type II tRNAs tRNALeu and tRNASer through their variable loops, which facilitated the binding of eEF1α1 to these tRNAs. Disrupting the interaction between MILIP and eEF1α1 or tRNAs diminished protein synthesis and cell viability. Targeting MILIP inhibited TNBC growth and cooperated with the clinically available protein synthesis inhibitor omacetaxine mepesuccinate in vivo. Collectively, these results identify MILIP as an RNA translation elongation factor that promotes protein production in TNBC cells and reveal the therapeutic potential of targeting MILIP, alone and in combination with other types of protein synthesis inhibitors, for TNBC treatment. SIGNIFICANCE: LncRNA MILIP plays a key role in supporting protein production in TNBC by forming complexes with tRNAs and eEF1α1, which confers sensitivity to combined MILIP targeting and protein synthesis inhibitors.

2.
Eur J Pharm Sci ; : 106768, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38643940

RESUMO

The negative coordination of growth hormone secretagogue receptor (GHS-R) and growth hormone-releasing hormone receptor (GHRH-R) involves in the repair processes of cellular injury. The allosteric U- or H-like modified GHRH dimer Grinodin and 2Y were comparatively evaluated in normal Kunming mice and hamster infertility models induced by CPA treatment. 1-3-9 µg of Grinodin or 2Y per hamster stem-cell-exhaustion model was subcutaneously administered once a week, respectively inducing 75-69-46 or 45-13-50% of birth rates. In comparison, the similar mole of human menopausal gonadotropin (hMG) or human growth hormone (hGH) was administered once a day but caused just 25 or 20% of birth rates. Grinodin induced more big ovarian follicles and corpora lutea than 2Y, hMG, hGH. The hMG-treated group was observed many distorted interstitial cells and more connective tissues and the hGH-treated group had few ovarian follicles. 2Y had a plasma lifetime of 21 days and higher GH release in mice, inducing lower birth rate and stronger individual specificity in reproduction as well as only promoting the proliferation of mesenchymal-stem-cells (MSCs) in the models. In comparison, Grinodin had a plasma lifetime of 30 days and much lower GH release in mice. It significantly promoted the proliferation and activation of ovarian MSCs together with the development of follicles in the models by increasing Ki67 and GHS-R expressions, and decreasing GHRH-R expression in a dose-dependent manner. However, the high GH and excessive estrogen levels in the models showed a dose-dependent reduction in fertility. Therefore, unlike 2Y, the low dose of Grinodin specifically shows low GHS-R and high GHRH-R expressions thus evades GH and estrogen release and improves functions of organs, resulting in an increase of fertility.

3.
Blood ; 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38579286

RESUMO

The overall prognosis of acute myeloid leukemia (AML) remains dismal, largely due to the inability of current therapies to kill leukemia stem cells (LSCs) with intrinsic resistance. Loss of the stress sensor GADD45A is implicated in poor clinical outcomes but its role in LSCs and AML pathogenesis is unknown. Here we define GADD45A as a key downstream target of LGR4 oncogenic signaling and discover a regulatory role for GADD45A loss in promoting leukemia-initiating activity and oxidative resistance in LGR4/HOXA9-dependent AML, a poor prognosis subset of leukemia. Knockout of GADD45A enhances AML progression in murine and patient-derived xenograft (PDX) mouse models. Deletion of GADD45A induces substantial mutations, increases LSC self-renewal and stemness in vivo and reduces levels of reactive oxygen species (ROS), accompanied by decreased response to ROS-associated genotoxic agents (e.g., ferroptosis inducer RSL3) and acquisition of an increasingly aggressive phenotype upon serial transplantation in mice. Our single-cell CITE-seq analysis on patient-derived LSCs in PDX mice and subsequent functional studies in murine LSCs and primary AML patient cells show that loss of GADD45A is associated with resistance to ferroptosis (an iron-dependent oxidative cell death caused by ROS accumulation) through aberrant activation of antioxidant pathways related to iron and ROS detoxification such as FTH1 and PRDX1, upregulation of which correlates with unfavorable outcomes in AML patients. These results reveal a therapy resistance mechanism contributing to poor prognosis and support a role for GADD45A loss as a critical step for leukemia-initiating activity and as a target to overcome resistance in aggressive leukemia.

4.
Front Immunol ; 15: 1333170, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38545112

RESUMO

Hypertensive nephropathy (HTN) is the second leading cause of end-stage renal disease (ESRD) and a chronic inflammatory disease. Persistent hypertension leads to lesions of intrarenal arterioles and arterioles, luminal stenosis, secondary ischemic renal parenchymal damage, and glomerulosclerosis, tubular atrophy, and interstitial fibrosis. Studying the pathogenesis of hypertensive nephropathy is a prerequisite for diagnosis and treatment. The main cause of HTN is poor long-term blood pressure control, but kidney damage is often accompanied by the occurrence of immune inflammation. Some studies have found that the activation of innate immunity, inflammation and acquired immunity is closely related to the pathogenesis of HTN, which can cause damage and dysfunction of target organs. There are more articles on the mechanism of diabetic nephropathy, while there are fewer studies related to immunity in hypertensive nephropathy. This article reviews the mechanisms by which several different immune cells and inflammatory cytokines regulate blood pressure and renal damage in HTN. It mainly focuses on immune cells, cytokines, and chemokines and inhibitors. However, further comprehensive and large-scale studies are needed to determine the role of these markers and provide effective protocols for clinical intervention and treatment.


Assuntos
Hipertensão Renal , Nefrite , Humanos , Inflamação , Citocinas
5.
J Phys Condens Matter ; 36(25)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38457833

RESUMO

Orientation regulation of nanoparticles in a suspension by an electric field is a powerful tool to tune its mechanical, thermal, optical, electrical properties etc. However, how molecular modification can affect the orientation of two-dimensional nanoparticles is still unclear. In this paper, the influence of molecular modification on the orientation of graphene nanosheets (GNS) in water was investigated through theoretical analyses and molecular dynamics (MD) simulations. Firstly, a new orientation angle model was proposed, which considers hydration effects, dipole moments and resistance torque. Then, MD simulations were conducted to investigate the effects of position, direction, type, and number of functional groups on the orientation of GNS. The trend observed in MD simulations is consistent with the proposed theoretical model. The results reveal that, under the combined influence of the dipole moment and hydration effects, the modification with hydrophilic functional groups can reduce the orientation angle from 21.31° to 8.34°, while the modification with hydrophobic functional groups increases it to 26.43°. Among the hydrophilic functional groups, orientation of hydroxylated GNS is the best. With an increase in the number of hydroxyl groups, orientation angle is decreased from 12.61° to 8.34°. This work can provide valuable guidance for the design of high-performance suspensions and composites, such as thermal smart materials with adjustable thermal conductivity and intelligent devices with tailored capabilities.

6.
Zool Res ; 45(2): 429-438, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38485510

RESUMO

The Chinese tree shrew ( Tupaia belangeri chinensis), a member of the mammalian order Scandentia, exhibits considerable similarities with primates, including humans, in aspects of its nervous, immune, and metabolic systems. These similarities have established the tree shrew as a promising experimental model for biomedical research on cancer, infectious diseases, metabolic disorders, and mental health conditions. Herein, we used meta-transcriptomic sequencing to analyze plasma, as well as oral and anal swab samples, from 105 healthy asymptomatic tree shrews to identify the presence of potential zoonotic viruses. In total, eight mammalian viruses with complete genomes were identified, belonging to six viral families, including Flaviviridae, Hepeviridae, Parvovirinae, Picornaviridae, Sedoreoviridae, and Spinareoviridae. Notably, the presence of rotavirus was recorded in tree shrews for the first time. Three viruses - hepacivirus 1, parvovirus, and picornavirus - exhibited low genetic similarity (<70%) with previously reported viruses at the whole-genome scale, indicating novelty. Conversely, three other viruses - hepacivirus 2, hepatovirus A and hepevirus - exhibited high similarity (>94%) to known viral strains. Phylogenetic analyses also revealed that the rotavirus and mammalian orthoreovirus identified in this study may be novel reassortants. These findings provide insights into the diverse viral spectrum present in captive Chinese tree shrews, highlighting the necessity for further research into their potential for cross-species transmission.


Assuntos
Tupaia , Vírus , Animais , Filogenia , Primatas , Musaranhos , Tupaia/fisiologia , Tupaiidae
7.
Circ Res ; 134(7): e17-e33, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38420756

RESUMO

BACKGROUND: Microvascular complications are the major outcome of type 2 diabetes progression, and the underlying mechanism remains to be determined. METHODS: High-throughput RNA sequencing was performed using human monocyte samples from controls and diabetes. The transgenic mice expressing human CTSD (cathepsin D) in the monocytes was constructed using CD68 promoter. In vivo 2-photon imaging, behavioral tests, immunofluorescence, transmission electron microscopy, Western blot analysis, vascular leakage assay, and single-cell RNA sequencing were performed to clarify the phenotype and elucidate the molecular mechanism. RESULTS: Monocytes expressed high-level CTSD in patients with type 2 diabetes. The transgenic mice expressing human CTSD in the monocytes showed increased brain microvascular permeability resembling the diabetic microvascular phenotype, accompanied by cognitive deficit. Mechanistically, the monocytes release nonenzymatic pro-CTSD to upregulate caveolin expression in brain endothelium triggering caveolae-mediated transcytosis, without affecting the paracellular route of brain microvasculature. The circulating pro-CTSD activated the caveolae-mediated transcytosis in brain endothelial cells via its binding with low-density LRP1 (lipoprotein receptor-related protein 1). Importantly, genetic ablation of CTSD in the monocytes exhibited a protective effect against the diabetes-enhanced brain microvascular transcytosis and the diabetes-induced cognitive impairment. CONCLUSIONS: These findings uncover the novel role of circulatory pro-CTSD from monocytes in the pathogenesis of cerebral microvascular lesions in diabetes. The circulatory pro-CTSD is a potential target for the intervention of microvascular complications in diabetes.


Assuntos
Catepsina D , Diabetes Mellitus Tipo 2 , Monócitos , Animais , Humanos , Camundongos , Encéfalo/metabolismo , Catepsina D/metabolismo , Catepsina D/farmacologia , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Precursores Enzimáticos , Camundongos Transgênicos , Monócitos/metabolismo , Transcitose/fisiologia
8.
J Nutr Health Aging ; 28(3): 100169, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38308922

RESUMO

BACKGROUND: Malnutrition is a critical issue among older inpatients, yet limited large-scale research related to this issue has been conducted in China. This study aimed to examine the nutritional status and support of older inpatients in China, assess the associations between disease categories and malnutrition on admission, and explore effective nutritional intervention. METHODS: A total of 24,139 older participants from the China Nutrition Fundamental Data 2020 Project were included. Malnutrition was measured by the Global Leadership Initiative on Malnutrition criteria. Adjusted odds ratios (aORs) were calculated using logistic analysis. RESULTS: The overall frequency of malnutrition on admission was 18.9%. Participants with infections were more likely to have malnutrition (aOR = 1.929, 95% CI 1.486-2.504). Risks that were also noted for malnutrition included neoplasms (aOR = 1.822, 95% CI 1.697-1.957), hemic and lymphatic diseases (aOR = 1.671, 95% CI 1.361-2.051), nervous system diseases (aOR = 1.222, 95% CI 1.126-1.326), respiratory diseases (aOR = 1.613, 95% CI 1.490-1.746), and digestive system diseases (aOR = 1.462, 95% CI 1.357-1.577). Further, 32.26% inpatients with malnutrition during hospitalization didn't receive nutritional support. Oral nutrition supplements, enteral tube feeding, and parenteral nutrition were associated with stable or improved nutritional status. CONCLUSIONS: Older inpatients were at a high risk for malnutrition but did not receive adequate nutritional intervention. More resources and attention need to be devoted to the nutritional status of older inpatients and targeted nutritional support.


Assuntos
Desnutrição , Estado Nutricional , Humanos , Pacientes Internados , Apoio Nutricional , Desnutrição/epidemiologia , Desnutrição/prevenção & controle , China , Avaliação Nutricional
9.
Biomark Res ; 12(1): 19, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38311781

RESUMO

BACKGROUND: Distant metastasis is the major cause of lung adenocarcinoma (LUAD)-associated mortality. However, molecular mechanisms involved in LUAD metastasis remain to be fully understood. While the role of long non-coding RNAs (lncRNAs) in cancer development, progression, and treatment resistance is being increasingly appreciated, the list of dysregulated lncRNAs that contribute to LUAD pathogenesis is also rapidly expanding. METHODS: Bioinformatics analysis was conducted to interrogate publicly available LUAD datasets. In situ hybridization and qRT-PCR assays were used to test lncRNA expression in human LUAD tissues and cell lines, respectively. Wound healing as well as transwell migration and invasion assays were employed to examine LUAD cell migration and invasion in vitro. LUAD metastasis was examined using mouse models in vivo. RNA pulldown and RNA immunoprecipitation were carried out to test RNA-protein associations. Cycloheximide-chase assays were performed to monitor protein turnover rates and Western blotting was employed to test protein expression. RESULTS: The expression of the lncRNA LINC01559 was commonly upregulated in LUADs, in particular, in those with distant metastasis. High LINC01559 expression was associated with poor outcome of LUAD patients and was potentially an independent prognostic factor. Knockdown of LINC01559 diminished the potential of LUAD cell migration and invasion in vitro and reduced the formation of LUAD metastatic lesions in vivo. Mechanistically, LINC01559 binds to vimentin and prevents its ubiquitination and proteasomal degradation, leading to promotion of LUAD cell migration, invasion, and metastasis. CONCLUSION: LINC01559 plays an important role in LUAD metastasis through stabilizing vimentin. The expression of LINC01559 is potentially an independent prognostic factor of LUAD patients, and LINC01559 targeting may represent a novel avenue for the treatment of late-stage LUAD.

10.
Hematology ; 29(1): 2307817, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38319083

RESUMO

OBJECTIVE: To analyze the current treatment status and prognostic regression of the chronic NK cell lymphoproliferative disorder (CLPD-NK). METHODS: We retrospectively analyzed the clinical features, treatment and prognosis of 18 patients with CLPD-NK who were treated at our Hospital between September 2016 and September 2022. RESULTS: Eighteen patients were included: three patients were treated with chemotherapy, five patients underwent immune-related therapy, one patient was treated with glucocorticoids alone, five patients were administered granulocyte colony-stimulating factor, blood transfusion therapy, or anti-infection therapy, followed by observation and follow-up, and four patients were observed without treatment. Fifteen patients survived, including two patients who achieved complete remission (CR) and seven patients who achieved partial remission (PR), of whom one patient progressed to Aggressive NK-cell leukemia (ANKL) and sustained remission after multiple lines of treatment; three patients were not reviewed, of which one patient was still in active disease, three patients developed hemophagocytic syndrome during treatment and eventually died, one of them had positive Epstein-Barr virus (EBV) expression. The 5-years overall survival rate was 83%. CONCLUSION: Most patients with CLPD-NK have inert progression and a good prognosis, whereas some patients have a poor prognosis after progressing to ANKL and combined with hemophagocytic syndrome. Abnormal NK cells invading the center suggest a high possibility of ANKL development, and immunosuppressants and hormones are effective treatments for this disease.


Assuntos
Infecções por Vírus Epstein-Barr , Leucemia Linfocítica Granular Grande , Leucemia , Linfo-Histiocitose Hemofagocítica , Transtornos Linfoproliferativos , Humanos , Infecções por Vírus Epstein-Barr/complicações , Herpesvirus Humano 4 , Estudos Retrospectivos , Transtornos Linfoproliferativos/diagnóstico , Transtornos Linfoproliferativos/terapia , Prognóstico , Células Matadoras Naturais/metabolismo , Doença Crônica , Leucemia/metabolismo
11.
Nat Commun ; 15(1): 1353, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355624

RESUMO

There is strong evidence that obesity is a risk factor for poor semen quality. However, the effects of multigenerational paternal obesity on the susceptibility to cadmium (a reproductive toxicant)-induced spermatogenesis disorders in offspring remain unknown. Here, we show that, in mice, spermatogenesis and retinoic acid levels become progressively lower as the number of generations exposed to a high-fat diet increase. Furthermore, exposing several generations of mice to a high fat diet results in a decrease in the expression of Wt1, a transcription factor upstream of the enzymes that synthesize retinoic acid. These effects can be rescued by injecting adeno-associated virus 9-Wt1 into the mouse testes of the offspring. Additionally, multigenerational paternal high-fat diet progressively increases METTL3 and Wt1 N6-methyladenosine levels in the testes of offspring mice. Mechanistically, treating the fathers with STM2457, a METTL3 inhibitor, restores obesity-reduced sperm count, and decreases Wt1 N6-methyladenosine level in the mouse testes of the offspring. A case-controlled study shows that human donors who are overweight or obese exhibit elevated N6-methyladenosine levels in sperm and decreased sperm concentration. Collectively, these results indicate that multigenerational paternal obesity enhances the susceptibility of the offspring to spermatogenesis disorders by increasing METTL3-mediated Wt1 N6-methyladenosine modification.


Assuntos
Infertilidade Masculina , Análise do Sêmen , Animais , Humanos , Masculino , Camundongos , Dieta Hiperlipídica/efeitos adversos , Pai , Infertilidade Masculina/genética , Metiltransferases , Obesidade/metabolismo , Sêmen/metabolismo , Tretinoína
12.
J Exp Clin Cancer Res ; 43(1): 17, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38200519

RESUMO

BACKGROUND: Prohibitin 2 (PHB2) exhibits opposite functions of promoting or inhibiting tumour across various cancer types. In this study, we aim to investigate its functions and underlying mechanisms in the context of gastric cancer (GC). METHODS: PHB2 protein expression levels in GC and normal tissues were examined using western blot and immunohistochemistry. PHB2 expression level associations with patient outcomes were examined through Kaplan-Meier plotter analysis utilizing GEO datasets (GSE14210 and GSE29272). The biological role of PHB2 and its subsequent regulatory mechanisms were elucidated in vitro and in vivo. GC cell viability and proliferation were assessed using MTT cell viability analysis, clonogenic assays, and BrdU incorporation assays, while the growth of GC xenografted tumours was measured via IHC staining of Ki67. The interaction among PHB2 and SHIP2, as well as between SHIP2 and NEDD4, was identified through co-immunoprecipitation, GST pull-down assays, and deletion-mapping experiments. SHIP2 ubiquitination and degradation were assessed using cycloheximide treatment, plasmid transfection and co-immunoprecipitation, followed by western blot analysis. RESULTS: Our analysis revealed a substantial increase in PHB2 expression in GC tissues compared to adjacent normal tissues. Notably, higher PHB2 levels correlated with poorer patient outcomes, suggesting its clinical relevance. Functionally, silencing PHB2 in GC cells significantly reduced cell proliferation and retarded GC tumour growth, whereas overexpression of PHB2 further enhanced GC cell proliferation. Mechanistically, PHB2 physically interacted with Src homology 2-containing inositol 5-phosphatase 2 (SHIP2) in the cytoplasm of GC cells, thus leading to SHIP2 degradation via its novel E3 ligase NEDD4. It subsequently activated the PI3K/Akt signaling pathway and thus promoted GC cell proliferation. CONCLUSIONS: Our findings highlight the importance of PHB2 upregulation in driving GC progression and its association with adverse patient outcomes. Understanding the functional impact of PHB2 on GC growth contributes valuable insights into the molecular underpinnings of GC and may pave the way for the development of targeted therapies to improve patient outcomes.


Assuntos
Neoplasias Gástricas , Ubiquitina-Proteína Ligases , Humanos , Inositol Polifosfato 5-Fosfatases , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Neoplasias Gástricas/genética , Ubiquitinação
13.
Environ Pollut ; 341: 122969, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37989408

RESUMO

Hexi Corridor is one of the most important base of vegetable producing areas in China. Livestock manure (LM) applied to agricultural field could lead to soil heavy metal (HM) pollution. Previous studies have focused on HM pollution following LM application in acidic polluted soils; however, fewer studies have been conducted in alkaline unpolluted soils. A 4-year field vegetable production experiment was conducted using pig manure (PM) and chicken manure (CM) at five application rates (0, 15, 30, 45, and 60 t ha-1) to elucidate potential risks of HMs in an alkaline unpolluted soil in the Hexi Corridor oasis agricultural area and HM uptake by Chinese cabbage. The results showed that LM application caused a significant build-up of Cu, Zn, Pb, Cd, and Ni content in topsoil by 30.6-99.7%, 11.4-51.7%, 1.4-31.3%, 5.6-44.9%, 14%-40.8%, respectively. The Cd, Cu, Zn could potentially exceed the soil threshold in next 8-65 years after 15-60 t ha-1 LM application. Under LM treatment, the soil DTPA-extractable Cu, Zn, Fe, the acid-extractable fraction of Cu, Zn, Fe, Cd, Ni, and the Oxidable fraction of Cu, Zn, Fe, Mn, Cd, Ni significantly increased, but the DTPA-extractable Pb, Cd, the acid-extractable fraction of Pb, and the reducible fraction of Cd significantly decreased. Cu and Zn could migrate to the deeper soil and relatively increase in DTPA-extracted Cu, Zn were found in 20-40 cm soil depth after LM application. The pH and SOM could influence the bioavailability of HMs in soil. The bioaccumulation factor and transfer factor (TF) values were <1 except Mn (TF > 1). HMs in leaf did not approach the threshold for HM toxicity due to the "dilution effect". Recommend the type of manure was the PM and the annual PM application rate was 30 t ha-1 to ensure a 20-year period of clean production in alkaline unpolluted Fluvo-aqiuc vegetable soils.


Assuntos
Brassica , Metais Pesados , Poluentes do Solo , Suínos , Animais , Solo/química , Esterco/análise , Gado , Cádmio , Disponibilidade Biológica , Chumbo , Poluentes do Solo/análise , Metais Pesados/análise , Verduras , China , Ácidos , Ácido Pentético
14.
Wiley Interdiscip Rev RNA ; 15(1): e1829, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38114887

RESUMO

In recent years, m6A modifications in RNA transcripts have arisen as a hot topic in cancer research. Indeed, a number of independent studies have elaborated that the m6A modification impacts the behavior of tumor cells and tumor-infiltrating immune cells, altering tumor cell metabolism along with the differentiation and functional activity of immune cells. This review elaborates on the links between RNA m6A modifications, tumor cell metabolism, and immune cell behavior, discussing this topic from the viewpoint of reciprocal regulation through "RNA m6A-tumor cell metabolism-immune cell behavior" and "RNA m6A-immune cell behavior-tumor cell metabolism" axes. In addition, we discuss the various factors affecting RNA m6A modifications in the tumor microenvironment, particularly the effects of hypoxia associated with cancer cell metabolism along with immune cell-secreted cytokines. Our analysis proposes the conclusion that RNA m6A modifications support widespread interactions between tumor metabolism and tumor immunity. With the current viewpoint that long-term cancer control must tackle cancer cell malignant behavior while strengthening anti-tumor immunity, the recognition of RNA m6A modifications as a key factor provides a new direction for the targeted therapy of tumors. This article is categorized under: RNA Processing > RNA Editing and Modification RNA in Disease and Development > RNA in Disease RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.


Assuntos
Neoplasias , 60697 , Humanos , Processamento Pós-Transcricional do RNA , Neoplasias/genética , Transporte Biológico , RNA , Microambiente Tumoral
15.
Zhongguo Zhong Yao Za Zhi ; 48(21): 5946-5956, 2023 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-38114190

RESUMO

This study aims to systematically evaluate the clinical efficacy and safety of Kushen Gelatum combined with antibiotics for treating bacterial vaginosis. The randomized controlled trial(RCT) of Kushen Gelatum for treating bacterial vaginosis were retrieved from CNKI, Wanfang, VIP, SinoMed, PubMed, and Cochrane Library with the time interval from inception to January 2023. Data were extracted from the included RCT by 2 investigators, including the sample size, characteristics of patients, interventions and controls, outcome indicators, and adverse effects. The Cochrane collaboration network's bias risk assessment tool was used for methodolo-gical quality evaluation of the included trials. RevMan 5.4 was employed to perform the Meta-analysis. A total of 19 RCTs were inclu-ded, involving 1 980 patients with bacterial vaginosis. Meta-analysis showed that, compared with nitroimidazoles alone, Kushen Gelatum + nitroimidazoles improved the total response rates in terms of clinical symptoms and laboratory tests(RR=1.24, 95%CI[1.13, 1.36], P<0.000 01), laboratory tests(RR=1.16, 95%CI[1.06, 1.26], P=0.000 9), and clinical symptoms(RR=1.26, 95%CI[1.08, 1.46], P=0.003), and reduced the leukocyte esterase positive rate(RR=0.29, 95%CI[0.17, 0.48], P<0.000 01) and the recurrence rate(RR=0.37, 95%CI[0.23, 0.58], P<0.000 1). Compared with lincomycin antibiotics(clindamycin) alone, Kushen Gelatum + lincomycin antibiotics(clindamycin) improved the total response rates in terms of clinical symptoms and laboratory tests(RR=1.18, 95%CI[1.06, 1.31], P=0.003) and laboratory tests(RR=1.27, 95%CI[1.04, 1.54], P=0.02), reduced the recurrence rate(RR=0.20, 95%CI[0.05, 0.75], P=0.02), and shortened the time to relief of burning sensation(MD=-1.70, 95%CI[-2.15,-1.26], P<0.000 01), vaginal itching(MD=-0.82, 95%CI[-1.30,-0.34], P=0.000 8), and abnormal leucorrhea(MD=-1.52, 95%CI[-1.98,-1.06], P<0.000 01). Compared with nitroimidazoles + probiotics, Kushen Gelatum + nitroimidazoles + probiotics improved the total response rate in terms of clinical symptoms and laboratory tests(RR=1.18, 95%CI[1.02, 1.36], P=0.03) and reduced the recurrence rate(RR=0.27, 95%CI[0.09, 0.76], P=0.01). Kushen Gelatum combined with antibiotics demonstrates a potential therapeutic effect on bacterial vaginosis, whereas the number and quality of the relevant clinical studies remain to be improved. The process of clinical trial should be standardized to improve the quality of evidence, so as to provide strong evidence to guide the application of Kushen Gelatum in clinical practice.


Assuntos
Nitroimidazóis , Vaginose Bacteriana , Feminino , Humanos , Antibacterianos/efeitos adversos , Clindamicina/efeitos adversos , Vaginose Bacteriana/tratamento farmacológico , Vaginose Bacteriana/induzido quimicamente , Nitroimidazóis/efeitos adversos
16.
Am J Cancer Res ; 13(10): 4822-4831, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37970363

RESUMO

Osteosarcoma, a malignant bone tumor characterized by a high rate of metastasis and poor survival, presents a critical need for identifying novel biomarkers associated with metastasis. In this study, we conducted an extensive analysis utilizing transcriptional and clinical data sourced from databases such as GEO, TCGA, CCLE, R2, and Xena. And we discovered that Ribosomal protein LP1 (RPLP1) ranked among the top upregulated genes in relation to osteosarcoma metastasis. Notably, RPLP1 exhibited significant expression in both osteosarcoma cell lines and patient samples. Moreover, multiple osteosarcoma studies revealed a strong correlation between RPLP1 overexpression and worse metastasis-free survival as well as overall survival. Additionally, we observed a consistent association between dysregulation of RPLP1 and reduced overall survival across various tumor types. Knocking down of RPLP1 led to the down-regulation of MYL5 and functional enrichment toward cell cycle and cellular interaction. Based on these findings, we propose that RPLP1 has the potential to serve as a prognostic biomarker, indicating increased metastasis and worse survival outcomes in osteosarcoma. These insights contribute to a better understanding of the disease and may pave the way for future research and therapeutic approaches.

17.
Signal Transduct Target Ther ; 8(1): 432, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37949875

RESUMO

The Omicron variant of the severe acute respiratory syndrome coronavirus 2 (SARS­CoV­2) infected a substantial proportion of Chinese population, and understanding the factors underlying the severity of the disease and fatality is valuable for future prevention and clinical treatment. We recruited 64 patients with invasive ventilation for COVID-19 and performed metatranscriptomic sequencing to profile host transcriptomic profiles, plus viral, bacterial, and fungal content, as well as virulence factors and examined their relationships to 28-day mortality were examined. In addition, the bronchoalveolar lavage fluid (BALF) samples from invasive ventilated hospital/community-acquired pneumonia patients (HAP/CAP) sampled in 2019 were included for comparison. Genomic analysis revealed that all Omicron strains belong to BA.5 and BF.7 sub-lineages, with no difference in 28-day mortality between them. Compared to HAP/CAP cohort, invasive ventilated COVID-19 patients have distinct host transcriptomic and microbial signatures in the lower respiratory tract; and in the COVID-19 non-survivors, we found significantly lower gene expressions in pathways related viral processes and positive regulation of protein localization to plasma membrane, higher abundance of opportunistic pathogens including bacterial Alloprevotella, Caulobacter, Escherichia-Shigella, Ralstonia and fungal Aspergillus sydowii and Penicillium rubens. Correlational analysis further revealed significant associations between host immune responses and microbial compositions, besides synergy within viral, bacterial, and fungal pathogens. Our study presents the relationships of lower respiratory tract microbiome and transcriptome in invasive ventilated COVID-19 patients, providing the basis for future clinical treatment and reduction of fatality.


Assuntos
COVID-19 , Microbiota , Pneumonia , Humanos , COVID-19/genética , COVID-19/metabolismo , SARS-CoV-2/genética , Respiração Artificial , Pulmão , Pneumonia/metabolismo , Bactérias
18.
Sci Rep ; 13(1): 20969, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-38017264

RESUMO

Hepatocellular carcinoma (HCC) is a lethal malignancy worldwide with an increasing number of new cases each year. Apolipoprotein (APOL) isoforms have been explored for their associations with HCC.The GSE14520 cohort was used for training data; The Cancer Genome Atlas (TCGA) database was used for validated data. Diagnostic, prognostic significance and mechanisms were explored using these cohorts. Risk score models and nomograms were constructed using prognosis-related isoforms and clinical factors for survival prediction. Oncomine and HCCDB databases were further used for validation of diagnostic, prognostic significance. APOL1, 3, and 6 were differentially expressed in two cohorts (all P ≤ 0.05). APOL1 and APOL6 had diagnostic capacity whereas APOL3 and APOL6 had prognostic capacity in two cohorts (areas under curves [AUCs] > 0.7, P ≤ 0.05). Mechanism studies demonstrated that APOL3 and APOL6 might be involved in humoral chemokine signaling pathways (all P ≤ 0.05). Risk score models and nomograms were constructed and validated for survival prediction of HCC. Moreover, diagnostic values of APOL1 and weak APOL6 were validated in Oncomine database (AUC > 0.700, 0.694); prognostic values of APOL3 and APOL6 were validated in HCCDB database (all P < 0.05). Differentially expressed APOL1 and APOL6 might be diagnostic biomarkers; APOL3 and APOL6 might be prognostic biomarkers of RFS and OS for HCC via chemokine signaling pathways.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/genética , Apolipoproteína L1/genética , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/genética , Isoformas de Proteínas , Biomarcadores , Quimiocinas , Prognóstico
19.
Front Immunol ; 14: 1269451, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37868994

RESUMO

Regulation of cell mortality for disease treatment has been the focus of research. Ferroptosis is an iron-dependent regulated cell death whose mechanism has been extensively studied since its discovery. A large number of studies have shown that regulation of ferroptosis brings new strategies for the treatment of various benign and malignant diseases. Iron excess and lipid peroxidation are its primary metabolic features. Therefore, genes involved in iron metabolism and lipid metabolism can regulate iron overload and lipid peroxidation through direct or indirect pathways, thereby regulating ferroptosis. In addition, glutathione (GSH) is the body's primary non-enzymatic antioxidants and plays a pivotal role in the struggle against lipid peroxidation. GSH functions as an auxiliary substance for glutathione peroxidase 4 (GPX4) to convert toxic lipid peroxides to their corresponding alcohols. Here, we reviewed the researches on the mechanism of ferroptosis in recent years, and comprehensively analyzed the mechanism and regulatory process of ferroptosis from iron metabolism and lipid metabolism, and then described in detail the metabolism of GPX4 and the main non-enzymatic antioxidant GSH in vivo.


Assuntos
Ferroptose , Sobrecarga de Ferro , Humanos , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Ferro/metabolismo , Glutationa Peroxidase/metabolismo , Peroxidação de Lipídeos/fisiologia , Antioxidantes/metabolismo , Glutationa/metabolismo
20.
Sci Rep ; 13(1): 16859, 2023 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-37803063

RESUMO

Worldwide, cancer is a huge burden, and each year sees an increase in its incidence. RAB (Ras-related in brain) 13 is crucial for a number of tumor types. But more research on RAB13's tumor-related mechanism is still required. This study's goal was to investigate RAB13's function in human pan-cancer, and we have also preliminarily explored the relevant mechanisms. To investigate the differential expression, survival prognosis, immunological checkpoints, and pathological stage of RAB13 in human pan-cancer, respectively, databases of TIMER2.0, GEPIA 2, and UALCAN were employed. CBioPortal database was used to analyze the mutation level, meanwhile, PPI network was constructed based on STRING website. The putative functions of RAB13 in immunological infiltration were investigated using single sample gene set enrichment analysis (ssGSEA). The mechanism of RAB13 in hepatocellular cancer was also briefly investigated by us using gene set enrichment analysis (GSEA). RAB13 was differentially expressed in a number of different cancers, including liver hepatocellular carcinoma (LIHC), stomach adenocarcinoma (STAD), etc. Additionally, RAB13 overexpression in LGG and LIHC is associated with a worse prognosis, including overall survival (OS) and disease-free survival (DFS). Then, we observed that early in BLCA, BRAC, CHOL, ESCA, HNSC, KICH, KIRC, LIHC, LUAD, LUSC, and STAD, the level of RAB13 expression was raised. Next, we found that "amplification" was the most common mutation in RAB13. The expression of SLC39A1, JTB, SSR2, SNAPIN, and RHOC was strongly positively linked with RAB13, according to a correlation study. RAB13 favorably regulated B cell, CD8 + T cell, CD4 + T cell, macrophage, neutrophil, and dendritic cell in LIHC, according to immune infiltration analysis. Immune checkpoint study revealed a positive correlation between RAB13 expression and PD1, PDL1, and CTLA4 in LIHC. According to GSEA, RAB13 is involved in a number of processes in LIHC, including MTORC1 signaling, MYC targets v1, G2M checkpoint, MITOTIC spindle, DNA repair, P53 pathway, glycolysis, PI3K-AKT-MTOR signaling, etc. RAB13 is a possible therapeutic target in LIHC and can be used as a prognostic marker.


Assuntos
Adenocarcinoma , Carcinoma Hepatocelular , Neoplasias Hepáticas , Neoplasias Gástricas , Humanos , Fosfatidilinositol 3-Quinases , Carcinoma Hepatocelular/genética , Proteínas rab de Ligação ao GTP/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...